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Chapter 1

Introduction

This report documents the development, implementation, and parameter estimation procedures for a

viscoelastic-viscoplastic-viscodamage model. This model is being developed to improve the predictive

accuracy of simulations involving plastic bonded explosives (PBX). A representative PBX is PBX9501,

which is 95% by weight HMX, 2.5% estane binder and 2.5% nitroplasticizer. Mechanical deformation of

this material is primarily accommodated by straining of the polymer binder and rearranging the relatively

rigid HMX crystals.

PBX9501 has been shown to exhibit viscoelastic, inelastic, and damage responses in experiments [6].

In this report viscoelastic response is defined as a rate dependent deformation response to external loads.

Viscoelastic strain will return to zero given adequate unloaded recovery time. Inelastic response is defined

as a response to external stimuli that will not return to zero over any unloaded recovery period. Damage

is defined as a degradation of the material stiffness [11]. The degradation of the stiffness may be due to

decohesion of binder and crystals, void growth in the binder, polymer chain damage in the binder, or other

unknown mechanisms, but the model developed here simply treats it as a scalar loss of stiffness.
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The viscoelastic nature of the material has been previously documented and models were developed

to incorporate it [5]. Because the binder dominates the response, early constitutive models focused on

the phenomenological linear viscoelastic models developed for accurate predictions of polymeric materials.

These constitutive models lacked the fidelity to accurately predict the departure from linear viscoelastic

behavior [16].

The damage response is also a well known part of the material behavior. ViscoSCRAM is a phe-

nomenological model that combines linear viscoelasticity and brittle damage response to better predict the

behavior of PBXs [4], [5], [13], [8] . The ViscoSCRAM material model only incorporates viscoelasticity

and damage into the shear response. This results in non-physical behavior for high-triaxiality stress states.

ViscoSCRAM also lacked an inelastic deformation mechanism, which results in poor predictive accuracy

for cyclic loading.

The model development is documented in Chapter 2. In Chapter 3, a series of cyclic experiments is

discussed as well as techniques for estimating model parameters from these experiments. A very limited

validation study was performed and is documented in Chapter 4. Finally, Chapter 5 contains concluding

remarks and future plans.

Direct notation is used throughout this report. In equations bold font is used for 2nd order tensors,

and blackboard font is used for 4th order tensors. One example is the 2nd order identity tensor (i), the

elements of which are δij . Another example is the symmetric 4th order identity tensor (I), the elements of

which are 1
2 (δikδjl + δilδjk). The tensor product is used in the definition of the tangent stiffness tensor. It

is written A⊗B and the elements are AijBkl.
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Chapter 2

Model Development

The model documented within this report incorporates viscoelastic response and a viscous model for both

plastic and damage evolution phenomena. These phenomena are supported by experimental data that

is discussed in Chapter 3. The model is based on small strain kinematics as described in Section 2.1.

The viscoelastic response is determined using a generalized Maxwell model [9]. There are other potential

viscoelastic models such as Kelvin-Voight [9], but W-13 has over a decade of experience developing and

fitting Maxwell models to experimental data. Section 2.2 contains pseudo-code for evaluating the Maxwell

model. The damage model is defined in Section 2.3. The overstress model that provides the kinetics of

plastic deformation is described in Section 2.4. Temperature dependance is briefly discussed in Section 2.5.

A solution algorithm is presented in Section 2.6, and the elastic tangent stiffness tensor, which is required

for global iteration in an implicit code, is discussed in Section 2.7.
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2.1 Kinematics

This constitutive model is based on small strain theory. The total strain can be partitioned into deviatoric

and volumetric parts by

ε = e+
1

3
Ei, (2.1)

where ε is the total strain tensor, e is the deviatoric strain tensor, E is the volumetric strain, and i is

the second order identity tensor. Small strain theory allows us to further decompose the deviatoric and

volumetric strains into inelastic (ei, and Ei) and recoverable (er, and Er) parts following

e = ei + er, (2.2)

E = Ei + Er. (2.3)

The recoverable strain is further decomposed to account for damage such that

eve = (1−D) er (2.4)

Eve = (1−D)Er, (2.5)

where eve and Eve are the deviatoric and volumetric strain measures that relate directly to stress. D is a

scalar damage variable that relates the damaged stiffness to the undamaged stiffness. The stress response

to the viscoelastic strain is determined using a Maxwell model. The viscoelastic evolution equations are

discussed in Section 2.2. Perzyna-like viscosity equations are used to evaluate the damage and inelastic

strain evolution as discussed in Sections 2.3, and 2.4 respectively.

2.2 Stress strain relations

The stress tensor is also partitioned into deviatoric and volumetric components as

σ = S + σmi (2.6)
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where σ is the total stress tensor, S is the deviatoric stress tensor, and σm is the mean stress. The

deviatoric stress can be related to the viscoelastic portion of the deviatoric strain through the convolution

integral

S (t) =

∫ ζ=t

ζ=0
2G (t− ζ) ėve (ζ) dζ (2.7)

where, in this implementation, the shear stiffness, G (t) is modeled with a Prony Series defined as

G (t) = G∞ +
N∑
j=1

G(j) exp

[
−t
τ (j)

]
. (2.8)

G∞, the G(j), and the τ (j) are fitting parameters, whose physical meaning is described in the literature

and summarized in [8]. The variable t is time in the same units as τ (j).

The mean stress could be treated in a similar way; however, the limited experimental data that exists

supports using a constant bulk modulus rather than a viscoelastic volumetric response thus, the linear

elastic equation for the mean stress is

σm = KEve, (2.9)

where K is the elastic bulk modulus.

Solution schemes for the viscoelastic stress-strain relation are widely documented in the literature, for

example see [2], [9], or [13]. The particular scheme employed in this model is summarized in Algorithm 1.

The term ξ(j) in the algorithm is a deviatoric internal variable that is analogous to strain. The evolution

of ξ(j) is related to viscous relaxation. The algorithm requires the parameters G0, G(j), and τ (j), but G0

can be found by evaluating Equation 2.8 at t = 0, which results in G0 = G∞ +
∑N

j=1G
(j).
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Algorithm 1 Maxwell [2]

Input: VARS : ∆eve, ∆t, even , ξ
(j)
n PARAMS : G0, G

(j), τ (j)

1: ∆ξ(j) =
(

1− exp
[
−∆t
τ (j)

])(
even − ξ

(j)
n

)
+ τ (j)

∆t

(
∆t
τ (j)

+ exp
[
−∆t
τ (j)

]
− 1
)

∆eve

2: ξ
(j)
n+1 = ξ

(j)
n + ∆ξ(j)

3: Sn+1 = G0

(
en+1 −

∑N
j=1

G(j)

G0
ξ

(j)
n+1

)
4: GT = G0 −

∑N
j=1

G(j)τ (j)

∆t

[
∆t
τ (j)
−
(

1− exp
[
−∆t
τ (j)

])]
Output: Sn+1 , ξ

(j)
n+1, GT

2.3 Damage Evolution

Several observations guided the development of the damage kinetics model documented in this section.

First, the magnitude of damage evolution is dependent on strain rate and temperature. Second, experi-

mental results indicate that there is no threshold surface in stress space inside of which damage evolution

is completely suppressed [7]. This observation applies to the uniaxial tension and uniaxial compression

experiments discussed in Chapter 3, but it is reasonable to believe that damage growth could be suppressed

for stress states with a sufficiently negative triaxiality, σm
σ̄ [2]. Third, while no discernible critical surface

was observed, we did observe a reduced damage rate for a given stress in subsequent cycles leading us to

believe that there is a hardening phenomena associated with damage evolution.

The damage kinetics model we have implemented is similar to a Perzyna model commonly utilized

for viscoplastic evolution [10]. Perzyna models are often referred to as overstress models, because unlike

rate independent evolution equations or models with rate dependent threshold surfaces such as Johnson

Cook [12], a state of stress that exist outside of the threshold surface is admissible. The evolution rate

is then proportional to how far the the state of stress is outside the threshold surface, and the threshold
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surface can expand or contract with damage evolution. The Perzyna model is described mathematically

as

Ḋ =

〈
fd (σ, q)

τd

〉nd

, (2.10)

where Ḋ is the damage rate, fd is a function defining the proximity of the stress state to the threshold

surface. The size of the threshold surface is defined in terms of the scalar q which is a function of the

current damage D. The viscosity, τd, defines the relaxation rate, and the shape factor, nd provides the

shape of the transition from rate independent to rate dependent behavior [10]. Both fd and τd have units

of stress. < • > are Macaulay brackets that return the argument for values greater than zero, or return

zero when the argument is less than zero, effectively providing a threshold surface.

In the new model, the function fd is a Drucker-Prager equivalent stress defined as σ∗ = σ̄+Bdσm [15],

where σ̄ is the Von-Mises stress, and Bd is the damage rate pressure proportionality constant. The Drucker-

Prager effective stress introduces the observed pressure dependence. The Perzyna overstress viscosity, τd,

is assumed to be a function of damage and is subject to the restriction that τd > 0 for all 0 ≤ D ≤ 1 so

that the intended threshold surface is retained. Stress states associated with uniaxial tension cannot exist

inside the critical surface and, as long as Bd < 3, stress states under uniaxial compression will never exist

inside the critical surface. In other words, consistent with the earlier observations, uniaxial experiments

will not exhibit a region of stresses where damage growth is entirely suppressed. We include the effects of

damage on the stress state by introducing a damaged effective stress

σ̂ =
σ̄ +Bdσm

1−D
, (2.11)

such that the effective stress and therefore damage growth rate increases with increasing magnitudes of

damage.

Equations 2.4 and 2.5 reflect the effect of damage in terms of the change to the recoverable response,
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but to motivate Equation 2.11 refer to Figure 2.1. In the 1-D example the average stress far from the

damage is σ = F/A. Near the damage, the area capable of carrying load is reduced to (1−D)A, resulting

in an enhanced average stress of σ/(1−D). In our development we are asserting that damage grows as a

function of the enhanced average stress in the region of the damage.

D*A

F

F

A

D*A

Figure 2.1: 1-D effective area example

Finally, temperature dependence is introduced using a function of temperature that premultiplies the

quasi-Perzyna model resulting in

Ḋ = Ḋ0 (T )

〈
σ̂

τd (D)

〉nd

, (2.12)

where Ḋ0 must be positive for all T , and as stated above τd is also positive for 0 ≤ D ≤ 1. The scalar

function Ḋ0 is discussed in Section 2.5

To further describe the evolution equations, the damage growth rate is depicted in Figure 2.2. The

Macaulay bracket and constraints on τd result in the shaded region for which the damage growth rate is

zero. This region is the result of a pressure (negative mean stress) that is large enough in proportion to

the Von-Mises stress to suppress damage growth. The blue lines in the figure represent lines of constant

damage growth rate. For a given temperature and current damage state any stress on the line will result in
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the same instantaneous damage growth rate. The damage growth rate for the constant rate curve increases

with increasing σ̄ intercept. The red lines are uniaxial compression and uniaxial tension loading curves.

The damage growth rate for a given Von-Mises stress is larger under uniaxial tension than under uniaxial

compression.

σ

σm
No Evolution

Constant Damage Rate Surfaces

Uniaxial Load Paths

TensionCompression

! m ! "
!
B

Figure 2.2: Damage rate surfaces in the Renduli Plane

To simplify model implementation a subroutine was written to evaluate Equation 2.12. This subroutine

with the specific forms of τd is described in Algorithm 2. The form of the equation for τd was chosen to

smoothly transition from a minimum value to a maximum value over the physically meaningful range of

damage (0 ≤ D ≤ 1). However, for numerical stability we smoothly transition to a very high τd starting

when D reaches a predetermined parameter DL. DL is typically around 0.99 which was found through

numerical experimentation.
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Algorithm 2 evolve damage

Input: VARS : σ̂dk, Dk PARAMS : md, τd0 , τdL, DL

1: fd = σ̂dk, ∂fd

∂σ̂d = 1

2: if D ≤ Dl then

3: τd = τd0 +
(
τdL − τd0

)
sin

(
π
2

(
D
DL

)md
)

4: ∂τd

∂∆D = mdπ
2DL

(
τdL − τd0

) (
Dk
DL

)md−1
cos

(
π
2

(
Dk
DL

)md
)

5: else

6: τd = τdL tan
(
π(Dk−DL)

2−2DL

)
7: ∂τd

∂∆D = π
2−2DL

[
1 + tan

(
π(Dk−DL)

2−2DL

)2
]

8: end if

Output: fd, τd, ∂fd

∂σ̂d , ∂τd

∂∆D

2.4 Plastic Evolution

The evolution of the inelastic strain tensor εi is defined by a scalar rate equation λ̇ and a flow tensor η,

ε̇i = λ̇η. (2.13)

The scalar rate equation, defined below, is similar to the damage rate equation 2.12.

λ̇ = λ̇0 (T )

〈
σ̂i

τ i (λ)

〉ni

, (2.14)

where σ̂i = σ̄+Biσm
1−D , and τ i > 0 for all λ. The flow tensor, η, is a unit direction tensor. The direction

is depicted on the Renduli plane by the green arrow in Figure 2.3. The model is developed such that

β, the angle between the constant flow rate surface and the flow direction, is variable. However, at this

time experimental data necessary for evaluating the angle is unavailable, so we assume associative flow.
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Associative flow means that the flow is perpendicular to the flow surface or β = 90◦. This results in

maximal dissipation and assured stability [10], but for geo-materials has been shown to over predict the

volumetric part of the inelastic strain.

σ

σm
No Evolution

Constant Flow Rate Surface

Uniaxial Load Paths

Flow Directions

TensionCompression

! m ! "
!
B

β = 90!

Figure 2.3: Flow rate surfaces in the Renduli Plane

The mathematical expression for the flow tensor is

η =
3√

3
2 + B2

3

S +
B

3
√

3
2 + B2

3

i, (2.15)

where B is related to Bi, and β. For instance, if β = 90◦, then B = Bi. Again, to simplify model

implementation a subroutine was written to evaluate Equation 2.13. This subroutine is represented in

Algorithm 3. The value of τ i remains constant when λ ≥ λL, and in the idealized equations the derivative

is zero. However, we have found that assigning a small positive number, e.g. 1E-8, to the derivative in this

region is necessary to ensure convergence.
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Algorithm 3 evolve plastic

Input: VARS : σ̂ik, λk PARAMS : mi, τ i0, τ iL, λL

Output: f i, τ i, ∂f i

∂σ̂i ,
∂τ i

∂∆λ

1: f i = σ̂ik,
∂f i

∂σ̂d = 1

2: if λ ≤ λl then

3: τ i = τ i0 +
(
τ iL − τ i0

)
sin

(
π
2

(
λ
λL

)mi
)

4: ∂τ i

∂∆λ = miπ
2λL

(
τ iL − τ i0

) (
λk
λL

)mi−1
cos

(
π
2

(
λk
λL

)mi
)

5: else

6: τ i = τ iL

7: ∂τ i

∂∆λ ≈ 0

8: end if

2.5 Temperature Dependence

Temperature dependence of the material is captured in this model using time-temperature-superposition [9].

Specifically, in the viscoelastic, the damage evolution, and the plastic flow models we use a shifted time

step, ∆t∗, which is calculated using the following functions:

log(A) =
−c0 (T − Tr)
c1 + T − Tr

(2.16)

∆t∗ =
∆t

A
, (2.17)

where A is the shift, c0 and c1 are fitting parameters, T is the current temperature, and Tr is the reference

temperature. c0 and A are unit-less while c1 has units of temperature. We note that there are potentially

three sets of parameters, one set for each phenomenon.
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2.6 Solution Algorithm

The integration of stress over a time increment is accomplished with a backward Euler implicit algorithm [3].

The change in total strain over the increment , ∆ε, as well as the state variables at the beginning of the

increment are passed from the parent code. The iteration begins with guessing the change in damage, ∆D,

and equivalent inelastic strain ∆λ. Then the change in recoverable strain is calculated, followed by the

change in viscoelastic strain ∆εve. Next, the Maxwell model is applied to calculate the trial stress given

the state variables and the change in viscoelastic strain. Finally, the rate of damage and inelastic strain

are calculated using the trial stress and the error in the guesses is calculated using

Error =

 ∆λ

∆D

−
 λ̇0∆tΨi (σ, D, λ)

Ḋ0∆tΨd (σ, D)

 , (2.18)

where, for convenience, we have defined

Ψi =

〈
f i
(
σ̂i
)

τ i (λ)

〉ni

, and (2.19)

Ψd =

〈
fd
(
σ̂d
)

τd (D)

〉nd

. (2.20)

This iteration process is summarized in Algorithm 4.
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Algorithm 4 Incremental Damage and Plastic Strain Multiplier

Input: VARS : εn, ∆ε, ∆t, εin, ξ
(j)
n , Dn

Input: PARAMS : G0, G
(j), τ (j), K, Bi, Br, B, mi, md, ni, nd, τ i0, τ iL, gd0 , gdL, DL, λL

1: initialize: k ← 0, ∆λ = 0, ∆D = 0, η′ = 0, ηvol = 0

2: εven = (1−Dn)
(
εn − εin

)
, Even = i : εven , even = εven − 1

3E
ve
n i, ∆E = i : ∆ε, ∆e = ∆ε− 1

3∆Ei

3: repeat

4: Dk = Dn + ∆D, eik = ein + ∆λη′, Eik = Ein + ∆ληvol, e
r
k = en+1 − eik , Erk = En+1 − Eik

evek = (1−Dk) e
r
k, E

ve
k = (1−Dk)E

r
k

5: σm(k) = KEvek

6: call Maxwell −→ Sk , ξ
(j)
k , GT

7: σ̄ =
√

3
2Sk : Sk, η

′ = 3

2σ̄

√
3
2

+B2

3

Sk, ηvol = B√
3
2

+B2

3

, σ̂d = σ̄+Bdσm
1−Dk

, σ̂i = σ̄+Biσm
1−Dk

8: call evolve damage −→ fd, τd, ∂fd

∂σ̂d , ∂τd

∂∆D

9: call evolve plastic −→ f i, τ i, ∂f i

∂σ̂i ,
∂τ i

∂∆λ

10: Ψd =
〈
fd

τd

〉nd

, Ψi =
〈
f i

τ i

〉ni

11: Error =

 ∆λ−∆tλ̇0Ψi

∆D −∆tḊ0Ψd

, J =

 1−∆tλ̇0
∂Ψi

∂∆λ −∆tλ̇0
∂Ψi

∂∆D

−∆tλ̇0
∂Ψd

∂∆λ 1−∆tḊ0
∂Ψd

∂∆D



12:

 ∆λ

∆D

 =

 ∆λ

∆D

− J−1Error

13: until
√
Error : Error < Tol (k ← k + 1)

14: update: σn+1 = σk + σm(k)i, ξ
(j)
n+1 = ξ

(j)
k , εin+1 = eik + 1

3E
i
ki, Dn+1 = Dk

Output: σn+1 , εin+1, ξ
(j)
n+1, Dn+1
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For our particular set of evolution equations the derivatives needed in step 11 are

∂Ψi

∂∆λ
= −niΨi

 1

f i
∂f i

∂σ̂i

3GT +BiBK√
3
2 + B2

3

− 1

τ i
∂τ i

∂∆λ

 , (2.21)

∂Ψi

∂∆D
= −niΨi

[
1

f i (1−D)

∂f i

∂σ̂i

(
3GT

σ̄
S : Er +BiKEr − σ̂i

)]
, (2.22)

∂Ψd

∂∆λ
= −ndΨd

 1

fd
∂fd

∂σ̂d

3GT +BdBK√
3
2 + B2

3

 , and (2.23)

∂Ψd

∂∆D
= −ndΨd

[
1

fd (1−D)

∂fd

∂σ̂d

(
3GT

σ̄
S : er +BdKEr − σ̂d

)
+

1

τd
∂τd

∂∆D

]
. (2.24)

We note that though stress is evaluated using the Maxwell relations of Section 2.2 the iteration process

makes use of the approximation

∆S ≈ 2GT (1−Dk)
(
∆e−∆λη′

)
− 2GT∆Der (2.25)

∆σm ≈ K (1−Dk) (∆E −∆ηvol)−K∆DEr, (2.26)

where GT is the shear tangent stiffness that comes from Algorithm 1. The complete list of model parameters

is listed in Table 2.1.
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Table 2.1: Summary of model parameters

Variable Description Units

K Elastic bulk modulus FL−2

G∞ Long term elastic shear modulus FL−2

G(j) Viscoelastic shear moduli FL−2

τ (j) Viscoelastic relaxation time constants s

Bi Inelastic rate function pressure proportionality constant -

Bd Damage rate function pressure proportionality constant -

B Inelastic flow pressure proportionality constant -

mi Inelastic rate shape parameter -

md Damage rate shape parameter -

ni Inelastic rate power coefficient -

nd Damage rate power coefficient -

τ i0 Initial inelastic viscosity FL−2

τ iL Inelastic viscosity limit FL−2

τd0 Initial damage viscosity FL−2

τdL Damage viscosity limit FL−2

λL Equivalent inelastic strain at peak viscosity -

DL Maximum damage -

Tr Reference temperature for TTS shift T

cve0 Viscoelastic WLF coefficient 1 -

cve1 Viscoelastic WLF coefficient 2 T

ci0 Inelastic WLF coefficient 1 -

ci1 Inelastic WLF coefficient 2 T

cd0 Damage WLF coefficient 1 -

cd1 Damage WLF coefficient 2 T
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2.7 Global Tangent Stiffness

The final set of equations necessary to implement this model into an implicit code is to define the tangent

stiffness for the global stress-strain relationship. The tangent stiffness when there is no new inelastic strain

or damage is

∂∆σ

∂∆ε
= (1−D)

[
2GT I +

(
K−

2GT

3

)
i⊗ i

]
, (2.27)

which is simply an elastic stiffness matrix with the tangent shear and bulk moduli reduced by the damage.

When the stress state is outside the zero evolution regions of the inelastic flow and damage surfaces the

tangent stiffness should be further reduced to account for the change in damage and inelastic strain over

the increment. However, at the time of this report we have only implemented the tangent stiffness above.

This tangent stiffness will potentially result in slower convergence than a tangent stiffness that includes

the other terms, but will not result in an inaccurate stress calculation.

2.8 Concluding Comments

The development of a viscoelastic-viscoplastic-viscodamage model has been documented in this chapter.

The viscoelastic model is applied only to the shear response, while the viscoplastic and viscodamage models

apply to both the shear and volumetric response. The viscoplastic and viscodamage evolution equations are

aware of the triaxiality of the stress state. The experimental data that supports the choice of phenomena

for this model as well as parameter estimation is covered in Chapter 3.
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Chapter 3

Model Parameter Estimation

This chapter discusses the experimental data used to estimate the material parameters listed in Table 2.1

and the methods of fitting those parameters. First, the experimental data used for parameter estimation

is discussed in Section 3.1. Then, the fitting procedures are discussed in Section 3.2.

3.1 Parameter estimation data

The model parameters are based entirely on a set of cyclic uniaxial experiments. Most of these experiments

were documented in a 2013 report on PBX9501 behaviors [7]. A few additional experiments were performed

in 2014, but they are the same format as those performed in 2013. The compressive and tensile experiments

were performed using displacement control. An example of a compressive displacement schedule is shown in

Figure 3.1. The crosshead was moved at a constant velocity to a desired displacement, then the crosshead

was returned to the zero position at a rate an order of magnitude faster. At some point during that

unloading the platen lost contact with the sample, which was then completely unloaded. Once the crosshead

returned to its initial condition the sample was allowed to recover for approximately 2 hours. The process
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was repeated with the same crosshead rates but a larger maximum crosshead displacement. After 10 to 20

cycles a final load to failure was performed.

Figure 3.1: Typical crosshead displacement schedule

The experimental data set includes compression and tension experiments. The compression experiments

were performed at strain rates ranging from ≈7x10−6 s−1 to ≈7x10−3 s−1, and temperatures from -15 ◦C

to 50 ◦C. There are also three compression experiments where 5 cycles with increasing displacements were

performed followed by 4 cycles at a lower displacement. The purpose of these experiments was to explore

the possibility of a growing threshold surface. The tension experiments were performed at ≈7x10−5 s−1

and 23 ◦C.

The displacement schedule shown in Figure 3.1 results in the engineering stress strain response shown

in Figure 3.2. Changing loading slope, viscoelastic recovery, and permanent deformation can be observed in

this experimental data. The viscoelastic recovery is evident in the difference between the strain at unload
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and the strain at reload which occurs two hours later. In the subsequent cycle, the permanent deformation

is evident in the nonzero strain at reload. This assumes that the material has fully recovered and that

additional unloaded time would not result in a return to zero strain.
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Figure 3.2: Typical response to cyclic compression

The time history of strain during the recovery period for a representative case is shown in Figure 3.3.

This data represents the unloaded recovery for cycle five of the experimental data shown in Figure 3.2. In

order to focus on the recovery, we plot data from 30 minutes into the recovery until the next cycle begins.

An exponential decay function was fit to the unloaded recovery strain vs. time data and is shown in green

on the figure. A relatively good fit is achieved for all the experimental data, though the fits are worse

for cycles with a small strain relative to the characteristic noise in the measurements. The fit is used to
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extrapolate ahead to a long time to approximate the permanent deformation given an infinite recovery

period. In general, the strain determined by extrapolation is nearly the same as the strain at the end of

the unloaded recovery. The strain at the end of the recovery for the example cycle is 0.2632% while the

extrapolated strain is 0.2622%.
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Figure 3.3: Unloaded recovery. Extrapolated strain is 0.2622%

The change in loading slope is more obvious in Figure 3.4 than in Figure 3.2. The figure only shows

the loading portion of each cycle and toe corrections have been applied to shift the curves along the strain

axis to intercept the origin. Each cycle clearly loads up a path that is more compliant than the previous

cycle. Additionally, the maximum stress achieved in some of the later cycles is lower than for previous

cycles. This may be a sign of softening, but all that can really be determined from this observation is that
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the material stiffness has degraded enough to result in a smaller stress with a bigger strain.
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Figure 3.4: Stress-strain response under compressive loading shifted to zero initial strain

A measure of damage consistent with Equations 2.4 and 2.5 is shown in Figure 3.5. The recoverable

strain (εr) is shown in blue and a scale factor (D) was used to scale the recoverable strain back to the

viscoelastic (undamaged) strain. For each loading a single scale factor that minimizes the difference between

the scaled stress-strain curve and that from the previous loading cycle is calculated. Then the cumulative

scale factor from loading cycles prior to each cycle were calculated to determine the appropriate damage

value for that particular loading cycle. For example, the damage factor for cycle three is the product of

the scale factor which shifts cycle two back to cycle one and the scale factor which shifts cycle three back

to cycle two.
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ε r

ε ve = (1−D)ε r


Dε r

Figure 3.5: Example of damage scaled viscoelastic strain

All the loading curves from Figure 3.4 have been scaled using the damage variable. The scaled curves

are shown in Figure 3.6. The curves essentially lie on top of each other except at the end of the loading

cycle, where we speculate that the plastic evolution is becoming more significant than the damage. The

agreement of the damage-scaled stress-strain curves during loading provides confidence that this method

of determining the change in stiffness is appropriate.
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Figure 3.6: All load cycles scaled back to the undamaged loading curve

3.2 Parameter Estimation Procedures

The procedures for estimating inelastic strain and damage evolution parameters are discussed in this

section. The experimental metrics used are the damage variable and axial residual strain measure as

discussed in Section 3.1. The damage evolution described by Equation 2.12 as discussed in Chapter 2.3 is

dependent on the state of stress and the current damage state, while the inelastic strain evolution described

by Equation 2.14 as discussed in Chapter 2.4 is dependent on the stress and the inelastic strain history, as

well as current damage state so we must begin by fitting the damage evolution parameters, prior to fitting

of the inelastic strain evolution parameters.

The ideal approach to fitting the damage evolution parameters is to iterate on the parametric values

until a residual is minimized. The residual is calculated by numerically integrating Equation 2.12 given the
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measured stress-time data and a trial set of parameter values (see Algorithm 2 for a list) then calculating

the difference between the predicted damage and the measured damage.

Much effort went into developing the numerical integration scheme. We began with a 4th order Runge-

Kutta integration [3]. Results using the 4th order scheme were highly sensitive to the sampling rate,

so we incorporated a sub cycling Runge-Kutta 3-2 method. The Runge-Kutta 3-2 method provides 3rd

order accuracy and an estimate of the ideal step size given a desired maximum error [1]. This method

was accurate, but required many cutbacks in step sizes so we finally incorporated a sub-cycling implicit

method. This method consists of two subroutines. The first subroutine is a single step Newton-Raphson

iterative implicit integration [3] as described in Algorithm 5. In addition to the parameters, this algorithm

takes in an initial damage value, time step, and the appropriate effective stress at the end of that time

step. The initial damage is zero for the first cycle and for all other cycles has been determined through

integration of the previous cycle. The algorithm returns the damage at the end of the time step and a

recommended step size. The recommended step size will be the input step size if convergence was reached

otherwise it will be 25% of the input step size. The input variable, Ḋ0, is a function of temperature and,

consequently is a constant for any particular isothermal experiment.
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Algorithm 5 Integrate Ḋ

Input: VARS : Dn, ∆t, σ̂n+1, Ḋ0 PARAMS : md, nd, DL, τd0 , τdL

1: initialize: k ← 0, ∆D = 0, k = 0

2: repeat

3: Dk = Dn + ∆D

4: Error = ∆D − Ḋ0∆t
〈
fd(σ̂n+1)
τd(D)

〉nd

5: J = ∆tnd
〈
fd

τd

〉nd−1
1
τd

[
∂fd

∂D −
fd

τd
∂τd

∂D

]
6: ∆D = ∆D − J−1Error

7: k = k + 1

8: until Error < tol or k > max iters

9: if Error > tol then

10: ∆trec = 0.25∆t

11: else

12: ∆trec = ∆t

13: end if

14: update: Dn+1 = Dk

Output: Dn+1, ∆trec

The actual integration over an increment may be done in multiple steps, if damage is changing quickly,

using the subroutine described in Algorithm 6. This algorithm assumes a linear change in stress with time,

which allows an evaluation of Algorithm 5 at sub-increments. It will continue to increment the damage until

the total time step is reached. This algorithm converged quickly and is computationally efficient enough

to allow us to calculate errors over all the data sets with an acceptable damage tolerance of tol=1x10−4.

Several cost functions and optimization algorithms were employed, but none achieved a desirable com-

parison of experiments and predictions. In the end a manual optimization, approximating a bisection

method, was performed. This was more successful than the attempted automated methods, because the

human brain is able to quickly recognize local minima and compensate resulting in a better fit. In the

future other automation methods, genetic algorithms for instance, will be investigated.
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Algorithm 6 Integrate Ḋ multistep

Input: VARS : Dn, ∆t, σ̂n, σ̂n+1, Ḋ0 PARAMS : md, nd, DL, τd0 , τdL

1: initialize: ∆tcomplete = 0, ∆ttry = ∆t, σ̂k = σ̂n, Dk = Dn

2: dσ
dt = σ̂2−σ̂1

∆t

3: repeat

4: σ̂k+1 = σ̂k + dσ
dt ∆ttry

5: call Integrate Ḋ −→ Dk+1, ∆trec

6: if ∆trec ≥ ∆ttry then

7: ∆tcomplete = ∆tcomplete + ∆ttry, σ̂k = σ̂k+1, Dk = Dk+1

8: else

9: ∆ttry = ∆trec

10: end if

11: if ∆t−∆tcomplete < ∆trec then

12: ∆trec = ∆t−∆tcomplete

13: end if

14: until ∆tcomplete = ∆t

15: update: Dn+1 = Dk

Output: Dn+1

First, we optimized the parameters for all the cyclic data collected at 23 ◦C including both tension and

compression. We chose 23 ◦C as the reference temperature because over 50% of our data was collected at

that temperature. The value of Ḋ0 is set at 1.0 for the 23 ◦C experiments. A plot of predicted damage

level vs. experimentally estimated damage level is shown in Figure 3.7. Overall, the fits are reasonably

good, though they are noticeably worse at lower damage levels. One experiment that was not included

in the fitting process is a creep experiment. In this creep experiment, performed by Darla Thompson

(WX-7), the material was exercised in a slightly different manner. The experiment included only four

cycles, and rather than unloading immediately the load was held for a relatively long time (30 min for

the first cycle and monotonically increasing to 8 hours for the final cycle). The damage measured in the

creep experiment is also not well captured in the predictions, but as noted above, this creep experiment
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is relatively new and was not included in the fitting. We note that the measured damage is much smaller

for the tension experiments than for the compression. Because tensile experiments fail nearly immediately

after the peak is achieved the experiments cannot endure additional loading cycles including large amounts

of damage. This could be the result of a different damage mechanism for compression and tension, which

is not captured by this modeling effort. Additional testing is planned for FY15 to help understand the

different damage mechanisms in tension and compression.
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Figure 3.7: Predicted damage vs. experimentally estimated damage

Next, we hold the parameters fixed and optimize the value of Ḋ0 for experiments at -15 ◦C and 50

◦C. These optimal values are then fit to the WLF-like function described in Equation 2.16. The predicted

damage vs. experimentally estimated damage is plotted in Figure 3.8. A reasonable fit is achieved for

temperatures of -15 ◦C, and 50 ◦C.

28



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Measured damage

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re

d
ic

te
d
 d

a
m

a
g
e

-15 ◦ C
23 ◦ C
35 ◦ C
40 ◦ C
50 ◦ C

Figure 3.8: Damage predictions with TTS shift applied.

Having developed a reasonable set of parameters for damage evolution the damage can be evaluated for

every data point in the experiments. This is necessary as a first step to fitting the inelastic strain evolution

because of the dependence on D in Equation 2.14. The inelastic strain evolution is in terms of λ, but we

measure the inelastic strain in the direction of the applied load as shown in Figure 3.9. In the diagram

the flow is in the direction of the green arrows. Results from experiments to date only include strain in

the direction of loading, which is shown in the red lines, one for tension and one for compression. The

dashed lines show the projection of the actual (assuming associative flow) inelastic flow onto the loading

directions. This projection is the only component of strain that has been measured. Consequently, to

identify the flow direction and uniquely determine B from uniaxial experiments, a scheme utilizing both

tension and compression data has been developed.
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Figure 3.9: Diagram of of the difference between inelastic flow and measured inelastic strain

To fit Equation 2.14, we evaluate the inelastic strain under uniaxial tension and uniaxial compression

conditions. Let uniaxial loading be aligned in the x direction. The inelastic strain rate in that direction is

evaluated from Equations 2.14 and 2.15 as

ε̇i11 = λ̇

 3

2σ̄
√

3
2 + B2

3

S11 +
B

3
√

3
2 + B2

3

 , (3.1)

where S11 = 2
3 σ̄ in uniaxial tension, and S11 = −2

3 σ̄ in uniaxial compression. The scale factor, m (S11) is

defined as

m (S11) =
3 +B

3
√

3
2 + B2

3

, (3.2)

for S11 > 0, and

m (S11) = λ̇
−3 +B

3
√

3
2 + B2

3

(3.3)

for S11 < 0.

Fitting of parameters in Equation 2.14 is conducted by scaling measured ε11 data to obtain an effective

λ as λ̇ = 1
m ε̇11. The algorithms used to integrate the inelastic strain rate are the same as Algorithms 5 and
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6 and, therefore, will not be repeated here. Again, automated optimization resulted in less than satisfactory

predictions, so a manual optimization process was carried out. The resulting predicted inelastic strain is

plotted against the experimentally estimated residual strain in Figure 3.10. The figure contains data and

predictions for many experiments carried out at 23 ◦C. We achieved a fit with errors of less than 10% for

cycles where the residual strain is less than 0.5%.
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Figure 3.10: Predicated axial inelastic strain vs. experimentally estimated axial inelastic strain

Temperature dependence of the inelastic strain evolution is also handled through time-temperature-

superposition. Having optimized the evolution parameters against 23 ◦C data we determine the optimal

λ̇0 necessary to fit the -15 ◦C, and 50 ◦C experimental data. Three temperatures are shown in Figure 3.11.

The fit of inelastic strain evolution at different temperatures is not as good as the evolution of the damage

at those temperatures, but the major divergence at temperatures other than 23 C◦C occurs for a residual

strain greater than 0.5%.
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Figure 3.11: Inelastic strain predictions with TTS shift applied

3.3 Conclusions

Overall, there is some room for improvement of the evolution laws or their associated parameters to better

fit the broad range of experimental data, but the inclusion of both inelastic strain and damage phenomena

along with the achieved fits to experimental data greatly improve our predictive capability under cyclic

loading of this material. These improvements are demonstrated in Chapter 4.
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Chapter 4

Validation

At this time the validation evidence is limited to monotonic uniaxial experiments and some features of

the cyclic experiments. The monotonic experiments were not used for model fitting so these are good

validation experiments. The change in slope and the permanent strain were extracted from the cyclic

experiments and used for fitting as discussed in Chapter 3, but the peak stress from each cycle and the

strain immediately after unload were not used for fitting. We will use a measure (to be defined later) of

slope and the total strain at peak stress for the monotonic experiments as well as the cycle peak stress and

unloaded strain from the cyclic experiments as our validation evidence. To demonstrate the improvements

in predictive capability resulting from this modeling effort, we will also compare the legacy viscoelastic

material model to the experimental data.

The simulations and comparisons to experimental data were performed using an automated system

developed under the ASC Engineering V&V project. The Validation Test Suite (eventually to be the Veri-

fication and Validation Test Suite) includes pre-packaged simulations of experiments along with associated

experimental data. The suite runs the simulations, extracts the metrics of interest, and creates plots and
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tables for inclusion in reports. Currently, the suite includes experiments for PBX9501, Sylgard 184, and

S5370, but will be extended to include numerous other models in the future. For further information or

access to the suite see Ted Lyman (W-13) or the documentation [14].

4.1 Performance of the model for simulations of monotonic experiments

Stress-strain data and simulations for monotonic tension and compression experiments are shown in Fig-

ures 4.1, and 4.2 respectively. We can see reasonable match between the simulation and the experiment,

though the tension simulations reach peaks that are much higher than the experiments.
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Figure 4.2: Monotonic compression experiments

(dashed lines) and simulations (solid lines)

A quantifiable measure of the performance is preferable to the qualitative statement of the previous

paragraph so we analyzed two metrics. We also want to be able to apply these metrics to the legacy

viscoelastic material model used in W-13 so we can demonstrate improvements in predictive accuracy, or

lack there of, provided by this model. First, we define a measure of the early slope as the slope of the best
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fit straight line between 10% and 40% of the peak stress. Next, we look at the experimental peak stress.

The legacy viscoelastic material model does not exhibit a peak in the stress-strain response so we define

the response of interest as the stress at the strain for which the experiment reaches a peak stress. Both

metrics are indicated an example experimental response in Figure 4.3.
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Figure 4.3: Performance metrics for model under monotonic uniaxial loading

The quantified metrics for uniaxial compression are summarized in Table 4.1. The table includes the

metrics for this model (VPVD) as well as the quantified metrics for the legacy viscoelastic model. For more

information on the legacy model see [16]. The better results are shown in green while the worse results are

shown in red. Overall, the legacy viscoelastic model exhibits a better early slope than the new model, but

the stresses predicted at the strain associated with the experimental peak stress are much closer for the

new model than for the legacy model.
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Table 4.1: Summary of results from compression comparisons.

Rate	
  (s-­‐1)	
   Temp	
  C	
  
VPVD	
   Viscoelas6c	
  

Slope	
  Error	
  (%)	
   Peak	
  Error	
  (%)	
   Slope	
  Error	
  (%)	
   Peak	
  Error	
  (%)	
  

1.0E-­‐02	
   23	
   30.97	
   3.42	
   15.6	
   131.8	
  

1.0E-­‐03	
   23	
   34.83	
   -­‐1.72	
   13.2	
   101.3	
  

1.0E-­‐04	
   23	
   19.65	
   -­‐5.07	
   2.9	
   64.6	
  

1.0E-­‐04	
   23	
   17.78	
   -­‐5.54	
   1.3	
   48.7	
  

1.0E-­‐06	
   23	
   6.55	
   -­‐10.23	
   -­‐13.3	
   26.6	
  

1.0E-­‐03	
   0	
   26.7	
   10.06	
   12.4	
   143.1	
  

1.0E-­‐05	
   0	
   19.77	
   -­‐5.45	
   -­‐0.8	
   92.5	
  

1.0E-­‐03	
   50	
   37.16	
   -­‐6.08	
   25.8	
   74.0	
  

1.0E-­‐05	
   50	
   23.91	
   -­‐2.44	
   10.0	
   51.8	
  

The monotonic tension performance metrics are summarized in Table 4.2. Again, there are a few

experiments where the legacy viscoelastic model performed better with respect to the early slope metric,

but the new model consistently provided a better prediction of the stress associated with the experimental

strain at peak stress.

Table 4.2: Summary of results from tension comparisons.

Rate	
  (s-­‐1)	
   Temp	
  C	
  
VPVD	
   Viscoelas6c	
  

Slope	
  Error	
  (%)	
   Peak	
  Error	
  (%)	
   Slope	
  Error	
  (%)	
   Peak	
  Error	
  (%)	
  

1.6E-­‐02	
   23	
   0.9	
   13.1	
   -­‐13.0	
   46.4	
  

1.6E-­‐03	
   23	
   -­‐9.1	
   18.9	
   -­‐25.9	
   44.0	
  

1.6E-­‐04	
   23	
   1.4	
   27.4	
   -­‐19.7	
   60.7	
  

1.6E-­‐05	
   23	
   11.9	
   34.1	
   -­‐9.8	
   63.4	
  

1.6E-­‐06	
   23	
   14.8	
   39.6	
   -­‐12.0	
   54.9	
  

1.6E-­‐03	
   0	
   -­‐17.1	
   6.6	
   -­‐30.0	
   26.8	
  

1.6E-­‐05	
   0	
   -­‐12.3	
   31.2	
   -­‐25.0	
   54.6	
  

1.6E-­‐03	
   50	
   32.9	
   38.4	
   17.6	
   107.8	
  

1.6E-­‐05	
   50	
   193.8	
   138.1	
   127.9	
   226.9	
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Overall, the new model performs well though there is room for improvement. The early slope estimates

are commonly not as good as those predicted by the legacy viscoelastic model, though it should be noted

that the legacy model was fit to this monotonic experimental data whereas the new model was not.

Alternatively, the new model can better predict the softening as is evident in the peak stress predictions

which are, across the board, better than the predictions made using the legacy model.

4.2 Performance of the model for simulations of cyclic experiments

We have only performed the comparisons between predictions and cyclic uniaxial compression experiments

at this time, because the tension experiments were slightly more complicated and require an additional

user subroutine to be developed and implemented in the Validation Test Suite [14]. These updates are

expected early in FY15. Examples of the stress-strain data for an experiment compared to the new model

and to the legacy model are shown in Figures 4.4, and 4.5 respectively. It is clear that for this example

the new model outperforms the legacy model.
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Figure 4.4: Cyclic stress-strain comparisons for

VPVD at 23 C◦ and 0.0005 in/min
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legacy model at 23 C◦ and 0.0005 in/min
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It would be cumbersome to evaluate plots such as those shown in Figures 4.4, and 4.5 for all experimental

configurations so we will evaluate several metrics individually. The metrics are shown in Figure 4.6. The

first metric is the peak stress for each cycle. The second metric is the unloaded strain for each cycle. This

is the strain immediately after the load returns to zero for each cycle. Finally, we will look at the strain at

the end of each recovery period. This is actually not a good validation metric for the new model because

it is very close to the inelastic strain used for fitting the model. However, it will be used to demonstrate

improved predictive capability over the legacy viscoelastic model.
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Figure 4.6: Performance metrics for model under cyclic uniaxial loading

The peak stresses for each cycle predicted by the new model (+) and the legacy model (dots) are

plotted against measurements and shown in Figure 4.7. The data plotted includes all the cyclic compression

experiments performed in FY13 and FY14. The black line represents a straight line with a slope of 1.0,

which means points falling on the line have predictions equal to the measurement. Deviation from the line
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is error. The new model clearly stays closer to the line than the viscoelastic model, especially for cycles at

higher stresses. The extreme curvature of some of the legacy model predictions is because the measured

peak stresses were beginning to fall while the legacy model always predicts a higher stress for a higher

strain. The improved results when using the new model come as no surprise because improved response

under cyclic loading was one of the main drivers for this model development, but it is clear evidence of the

improved predictive accuracy achieved.
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Figure 4.7: Predicted peak stress vs. measured peak stress. Legacy simulations are plotted with dots. The

new model is plotted with + symbols.

The predicted strain at unload vs. the measurements are shown in Figure 4.8. Again, the black line

indicates a perfect fit while the dots are the predictions for each cycle made with the legacy model and the

plus symbols indicate the predictions using the new model. The new model performs significantly better.

On average, the new model slightly underpredicts the strain at unload, while the legacy viscoelastic model
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greatly underpredicts the strain at unload. In both cases better results could be achieved if unloading

response were included in the fitting of the viscoelastic models, but these results are encouraging.
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Figure 4.8: Predicted peak stress vs. measured peak stress. Legacy simulations are plotted with dots. The

new model is plotted with + symbols.

Finally, we compare the predicted strain after recovery. These results are shown in Figure 4.9. The

legacy model results plotted with dots are below the measurements. In fact, in many cases the strain after

recovery predicted by the viscoelastic model is zero. It is expected that given sufficient time the legacy

model would return to zero strain, while the new model will not. The new model predictions are quite

good. On average, the new model does predict the measurements. This is certainly not surprising because

experimentally, the estimated inelastic strain was not much different from the strain after the recovery

period, and the estimated inelastic strain was used as a fitting parameter, as discussed in Chapter 3.
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Figure 4.9: Predicted peak stress vs. measured peak stress. Legacy simulations are plotted with dots. The

new model is plotted with + symbols.

4.3 Validation Conclusions

Overall, the new model does perform very well with respect to the validation evidence shown in this

chapter. The new model is clearly a significant improvement over the legacy viscoelastic model, but we

need to include many more small scale and component level validation experiments in the suite used for

PBX9501. There are a few experiments which were performed on geometries not appropriate for this report

and at least one experiment planned for FY15 (see Section 5.1 for details).
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Chapter 5

Conclusions

This report documents the development of a constitutive model for PBX9501. The constitutive model

includes viscoelastic, viscoplastic, and viscodamage behaviors. This model improves the predictive capa-

bility of simulations performed by W-13 that include PBX9501 components. The legacy model used for

simulations of these components is a simple viscoelastic model and we showed, in Chapter 4, that the new

model greatly improves predictions for response to cyclic loading. That improvement does come at the

cost of some accuracy for monotonic loading, but further experiments to be discussed later in this chapter

may provide missing knowledge enabling better fit over both loading regimes.

5.1 Future Experiments

There is a considerable experimental program planned for FY15 in support of continued development of this

constitutive model. These experiments include cyclic experiments similar to those discussed in Chapter 3,

cyclic creep experiments, an exploratory experiment, and a validation experiment.

The cyclic experiments conducted in FY15 will be similar to those conducted in FY14, but with
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additional diagnostics to provide simultaneous measurement of axial and radial strain in the sample. The

additional diagnostics support the estimation of the inelastic flow pressure proportionality constant, B,

as discussed in Chapter 3.2. These experiments might also provide additional information regarding the

splitting of the shear and volumetric parts of the stiffness as well as their degradation (damage).

Darla Thompson (WX-7) plans to perform a series of cyclic creep experiments in FY15, which will

include the additional diagnostics discussed above and will be conducted at a variety of temperatures and

loads. These experiments will extend the applicable range of the model and give a better indication of the

form of the denominator for the damage and inelastic strain evolution equations.

An exploratory experiment planned by Darla Thompson will provide insight into the potential anisotropic

nature of the damage. The plan is to test cubes of HE under cyclic compressive loading. Some of the

samples will be cycled to failure. Other samples will be cycled, but the cycles will be interrupted before

failure. Then the samples will be turned 90◦ and loading is resumed perpendicular to the previous cycles.

We might observe differences between the behavior of these two sample sets which would indicate a signif-

icant anisotropic component to the damage. Hopefully, we will be able to identify a region (magnitude of

damage) where the isotropic assumptions made in this model development are valid.

Cheng Liu (MST-8) is developing an experiment which will put the center of a thin disk in a near

biaxial tensile state. This experiment will not achieve a uniform stress state so we do not consider it a

parameter estimation experiment, but it will provide good validation evidence in a stress state that is

relevant and interesting to the analysts who are the primary customer of this work.
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5.2 Future Model Developments

There are several developments planned for FY15. The first of these developments is to implement the

model in an explicit code. Then we will perform further parameter fitting using the data made possible

through the new diagnostics and additional creep testing. We will evaluate the regime over which the

isotropic damage assumptions are valid. Finally, we will add experiments to the validation suite making

the validation evidence for the model more robust and complete.

The model demonstrated in this report was implemented in an implicit code (Abaqus/Standard). We

began with the implicit implementation because much of the analysis performed by W-13 is conducted

with Abaqus/Standard. There are additional analyses performed in W-13 that require an explicit code. To

satisfy the needs of W-13 we will implement this model in an explicit code (Abaqus/Explicit). We will then

develop/support the hand off procedures required for performing initial analysis steps in Abaqus/Standard

and then porting the results as initial conditions to Abaqus/Explicit.

Further parameter fitting will be possible because we are expecting simultaneous measurement of axial

and radial strain under uniaxial cyclic loading. Hopefully, the additional diagnostics will provide us with

volumetric strain data which will be used to inform the parameters in the flow potential as well as the

shear/volumetric split of the viscoelastic and damage models.

The simulations performed in support of this document were all performed with fully integrated ele-

ments. Many analyses performed in W-13 will benefit from the ability to use reduced integration elements.

To support that need we will study the appropriate hourglass control and advise the analysts as to the

proper control and parameters.

Chapter 4 included simulations performed at different but constant temperatures. Testing of the model

with components that are not appropriate for this report show reasonable convergence rates for conditions
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with varying temperatures, but we intend to include derivatives of stress with respect to temperature in

the implicit version of the model to improve the convergence rates for thermal-mechanical problems.
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